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Abstract— This paper presents a unique approach to the Green Vehicle Routing Problem with Multiple Technologies and Partial 

Recharges (GVRP-MTPR) using the Flamingo Search Algorithm (FSA). GVRP-MTPR is a variation of the traditional Vehicle Routing 

Problem (VRP) characterized by the need for efficient routes considering the use of electric vehicles, multiple charging technologies, 

and partial recharges of the green vehicles. FSA is a swarm intelligence optimization algorithm that is inspired by the behaviors of 

flamingos, mainly the Foraging and Migrating behaviors. FSA has previously demonstrated excellent performance in a diverse set of 

tasks such as push-pull circuit problems, path planning problems, and network intrusion detection systems. In our proposed methodology, 

we use the Flamingo Search Algorithm (FSA) to tackle GVRP-MTPR. Our proposed model generates an initial set of solutions that is 

further optimized using the foraging and migrating behaviors of FSA. The model was tested on a dataset of 60 instances of varying 

customer and vehicle counts, order distributions, and topologies. Key metrics such as cost, fitness, number of iterations, and execution 

time are used in evaluating the performance of the model. The results highlight the competitiveness of the Flamingo Search Algorithm 

in addressing GVRP-MTPR, offering insights for the optimization of green vehicle routing in logistics and transportation operations. 

 
Index Terms— Flamingo Search Algorithm, Foraging Behavior, Green Vehicle Routing Problem with Multiple Technologies and 

Partial Recharges, Migrating Behavior 

 

I. INTRODUCTION 

The vehicle routing problem (VRP) is a complex 

optimization challenge that arises in various industries 

requiring efficient transportation operations. It involves 

determining optimal routes and schedules for a fleet of 

vehicles to deliver goods or services to a set of geographically 

dispersed locations while minimizing costs and maximizing 

operational efficiency. As businesses increasingly face 

demands for faster delivery, reduced costs, and minimized 

environmental impact, the need for advanced VRP solutions 

becomes evident. 

The traditional VRP poses numerous challenges due to its 

inherent complexity, which exponentially grows with the 

number of customers, vehicles, and constraints. Factors such 

as varying customer demands, time windows, vehicle 

capacities, and multiple depots further complicate the 

optimization process. Failing to address these challenges 

adequately can lead to inefficient route planning, increased 

transportation costs, excessive fuel consumption, and 

extended delivery times, negatively impacting a company's 

competitiveness and profitability. Thus, there is a pressing 

need to develop novel VRP algorithms and techniques that 

can effectively address these challenges. 

The search for ever more efficient algorithms to implement 

vehicle routing models is constant and in recent years, nature-

inspired algorithms have gained significant attention as 

effective tools for solving complex optimization problems. 

One such algorithm is the Flamingo Search Algorithm (FSA), 

a metaheuristic algorithm inspired by the unique 

characteristics and behavior of flamingos. Developed and 

published in 2021, FSA shows promise in addressing various 

optimization challenges. It is shown to have the best results 

in single peak and multipeak tests among Swarm Intelligence 

Algorithms from Particle Swarm Optimization (PSO), Whale 

Optimization Algorithm (WOA), Grey Wolf Optimization 

(GWO), and Tunicate Swarm Algorithm(TSA). It is also 

shown to have a high accuracy rate with a fast convergence 

speed in the aforementioned tests. FSA has been 

experimented to solve several simulation experiments: push-

pull circuit problem, path planning problem, and network 

intrusion detection system and were proven to be useful for 

the said problems. In this research, FSA will be applied on 

the Vehicle Routing Problem and will be examined for its 

applicability on this problem. 

Through this research, the researchers will contribute to the 

development of efficient logistics systems for electric vehicle 

deliveries by developing a vehicle routing model that uses the 

Flamingo Search Algorithm (FSA) to optimize their routes. 

II. REVIEW OF RELATED LITERATURE 

A. Vehicle Routing Problem 

Vehicle Routing Problem(VRP) is a combinatorial 

optimization for generating an optimal set of routes for a fleet 

of vehicles [5]. It was later improvised by Clarke and Wright 

in 1964 using the Savings Algorithm, an effective greedy 

algorithm. VRP offers a wide range of direct applications in 

business. VRP routing tool vendors frequently assert that 

their products may save customers between 5% - 30%. VRP 

is concerned with the service of a delivery company, from one 
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or more depots to a set of customers through a set of vehicles 

with designated drivers moving on a given road network, 

such that all the customers’ demands are met while the global 

transportation cost (monetary, distance, fuel usage, etc.) is 

minimized. Graphs can be used to describe the road network 

used, where the arcs are the roads, and the vertices are the 

nodes (depot and customers). Each arc has its own designated 

cost, which is usually the length or travel time [1]. Another 

variant of the Vehicle Routing Problem that recently emerged 

is the Green Vehicle Routing Problem that involved the use 

of Electric Vehicles (EV) instead of the manual vehicles. The 

use of electronic vehicles is a promising solution for reducing 

costs and pollution caused by transportation and mobility 

operations. 

B. Swarm Intelligence 

Swarm Intelligence (SI) was first introduced by Gerardo 

Beni and Jing Wang in 1989 as the collective behavior of 

decentralized, self-organized systems, natural or artificial. SI 

systems typically consist of a population of boids or simple 

agents that interact with one another and their surroundings 

on a local level. The inspiration often comes from nature, 

especially biological systems [10]. Swarm Intelligence 

Optimization is described as an important paradigm itself 

with a wide range of applications. Most applications are in 

the industry of engineering, medicine, and business, whether 

to minimize cost and energy consumption, or to maximize 

profit, output, performance, and efficiency [9]. 

C. Flamingo Search Algorithm 

Flamingo Search Algorithm (FSA) was presented by 

Zhiheng and Jianhua in 2021. In their paper, they presented a 

new swarm intelligence optimization algorithm inspired by 

the two distinctive behaviors of flamingos: migratory and 

foraging. The proposed algorithm was built with global 

exploration and local exploitation capabilities for the 

optimization of algorithms with the use of mathematical 

models [18]. 

The main optimization ideas of FSA model are as follows: 

Flamingos communicate with each other. 

The population of the flamingos are unaware of the where 

the abundance of food is located in the current search area, 

they update the location of each flamingo based on the 

knowledge shared with each other. 

The rules of updating each flamingo are based on the 

behavior of the flamingo. 

The two main behavior of the FSA model are as follows: 

1. Foraging Behavior 

a. Communicative Behavior 

The flamingos that have the abundance of food in the 

population call the other flamingos to spread their location 

information and influence the position changes of other 

flamingos in the population. 

b. Beak Scanning Behavior 

If the current area of the flamingo is abundant in food, then 

the flamingo is encouraged to scan the area more carefully. 

c. Bipedal Mobile Behavior 

When the flamingos forage, while scanning the area with 

their beaks, their claws move toward where the food is most 

abundant in the flamingo population 

2. Migrating Behavior 

When the food is scarce in the present foraging area, the 

flamingo population migrates towards the next area where 

food is more abundant. 

D. Other Approaches 

In the paper, “A heuristic approach for the green vehicle 

routing problem with multiple technologies and partial 

recharges'' by Felipe et al. (2014), presented the different 

optimization techniques to solve a variant of vehicle routing 

problem. The two search methods used in this paper are Local 

Search and Simulated Annealing. 

1. Local Search 

Deterministic Local Search is based on an iterative 

improvement of the solutions, usually defined through 

neighborhood structures. This paper utilized 4 local search 

operators as follows: 

a. Recharge Relocation 

If a feasible solution's route visits at least one recharge 

station, it can be improved by ideally relocating a single 

recharging station. Following this logic, the operator 

Recharge Relocation is designed to locate, if necessary (and 

if possible), the ideal location of a single recharge point along 

a route, without changing the sequence of visits to the 

consumers. 

b. 2-opt 

The 2-opt algorithm works as follows: take 2 arcs from the 

route, reconnect these arcs with each other and calculate new 

travel distance. 

c. Reinsertion 

Customers are relocated from one route to another with the 

purpose of eliminating routes, eliminating recharges or just 

decreasing energy consumption. 

d. Local Search Combinations 

combination of local search operators 

2. Simulated Annealing 

The Simulated Annealing Framework utilizes a modified 

version of reinsertion as the basic move of that metaheuristic. 

The customer to be removed is selected at random with the 

probabilities proportional to the savings produced by the 

removal. The route in which it is reinserted. 
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Fig. 1. Flowchart of Flamingo Search Algorithm in GVRP 

is selected at random with uniform probability, to 

introduce diversification, and the optimal insertion point is 

computed. 

Table I. Average Cost and Running Time of Algorithms 

 Average Cost Average Time 

2O RR 𝑅1
1 48A 2O RR 𝑅1

1 48A 

N=10

0 

88.03 92.34 66.42 64.96 <1 <1 2 57 

N=20

0 

155.4

1 

161.72 114.65 111.48 <1 <1 15 348 

N=40

0 

279.8

4 

287.62 208.31 203.53 <1 <1 91 198 

Table I shows the result of the comparison between 

algorithms 2-opt (2O), Recharge Relocation (RR), 1,1 

Reinsertion (𝑅1
1) and 48A algorithm (48A) with respect to 

their average cost and average time. It shows that the 1,1 

Reinsertion algorithm has the lowest average cost per 

customer while both O2 and RR have the lowest average 

time. 

III. DESIGN AND METHODOLOGY 

A. Dataset 

The dataset used in the proposed research was taken from 

the paper by Felipe et al. [8], “A heuristic approach for the 

green vehicle routing problem with multiple technologies and 

partial recharges”. Each dataset contains the following 

technical data, as follows: 

Number of customers (N): 100, 200, 400 

Number of vehicles available: N/4 

Battery capacity: 20 KWh (equivalent to an autonomy of 

160 km) 

Energy consumption: 0.125 KWh/km 

Average speed: 25 km/h 

Vehicle capacity: 2300 kg 

Maximum route duration: 8 h 

Service time (minutes) 

Available technologies: 

Slow (S): 3.600 KWh/h and cost 0.160 €/KWh 

(conventional household technology, only used at the depot 

for night recharge) 

Medium (M): 20.000 KWh/h and cost 0.176 €/KWh 

(following the CHAdeMO protocol, available at some 

recharge stations) 

Fast (F): 45.000 KWh/h and cost 0.192 €/KWh (following 

a wireless protocol, available at some recharge stations) 

Fixed cost of recharge: 2.270 €/cycle 

The dataset considers two configurations: (1) The depot is 

centrally located and there are nine recharge stations 

including the depot, (2) and the depot is located at a corner 

with 5 recharge stations including the depot. There are three 

(3) sets of twenty (20) instances per set containing 100, 200, 

and 400 customer nodes, respectively.  The dataset has a total 

of 60 instances. All these instances are available at Doble TSP 

Multiples Pilas (ucm.es). 

Table II. Dataset Composition 

 Number of Instances Number of Customers in 

each instance 

N100 20 100 

N200 20 200 

N400 20 400 

B. Algorithm Design 

The general overview of the flow of the system, shown in 

Fig. 1 is detailed as follows: 

1. Dataset are preprocessed and populated in the data 

structures of the model 

The dataset instance will be preprocessed into the data 

structures of the model for it to be usable in the program. 

2. Initialize flamingos by generating initial feasible solutions 

A flamingo population was initialized by generating 

feasible solutions. Each flamingo will represent one 

solution(route) in the population. 

3. Calculate the cost of each flamingo 

For each flamingo in the population, the total amount of 

money spent for the solution was calculated, by taking into 

consideration the technology used for the recharging of the 

battery of the vehicle in order for the vehicle to successfully 

go through the whole route. 

4. Assign the flamingo with the least cost as the Leader 

Flamingo 

Find the flamingo with the least amount of cost in the 

population and assign it as the Leader Flamingo. 

5. Divide the flamingos into 2 groups: foraging and migration 

Divide the flamingo in the population into two groups 

based on the distinct behaviors of flamingos. 

6. Update the flamingos based on the behavior of their group, 

and attraction value to the Leader Flamingo. 

Each of the flamingos(solution) are updated according to 

the behavior they belong to. 
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Operators to be used for the Foraging Behavior: 

a. Balance Vehicle Routes: Given a flamingo, find the 

shortest and longest route and balance them by 

moving a set of nodes from the longest route to the 

shortest where their new size differences should not be 

larger than 1. 

b. Balance Charging Stations: For each vehicle, find the 

shortest and longest sub-route, then move the 

Charging Station from the shortest sub-route to the 

middle of the longest sub-route. 

Operators to be used for the Migratory Behavior: 

a. Route Rebuild: The routes of the current flamingo’s 

vehicles are compared to the routes of the vehicles in 

the leader flamingo. The common sub-routes between 

the current flamingo and best flamingo are retained 

while the remaining nodes are redistributed 

throughout the vehicles of the current flamingo. 

7. Check the feasibility of each of the updated flamingos. 

Check whether the newly updated flamingos exceed the 

restrictions of the problem: Vehicle Capacity and Maximum 

Route Duration. If the feasibility is violated, go back to 6, if 

not, go to 8. 

8. Check if the convergence criterions is met 

Check whether all the flamingos have passed the threshold 

value of the convergence criterion. Refer to Section 4.8.3 for 

the calculation of the convergence criterion. If all them have 

passed, proceed to 9, if not, go back to 3. 

9. Return Most Optimal Solution 

Once all the flamingos have converged into a single point 

in the solution space, the Leader Flamingo of the last iteration 

is returned to the user. 

C. Verification, Validation, and Testing 

The output of the model was the most optimal route from 

the given instance of the dataset. The verification and 

validation of the model was measured by these four metrics: 

Cost, Fitness, Number of Iterations, and CPU time of the 

optimal solution. Each of the metrics were calculated as 

follows. 

a. Cost 

The cost was calculated by getting the total amount of 

money spent for the recharge of the vehicle for the entire 

route. We get 𝐷𝑗
𝑖    which is the distance between nodes i and 

j in km. Given the coordinates of each nodes in the route, we 

calculate the distance between nodes by using the Euclidean 

Distance formula, refer to (1) where 𝑥𝑖  𝑎𝑛𝑑 𝑦𝑖  and 𝑥𝑗  𝑎𝑛𝑑 𝑦𝑗 

are x and y coordinates of node i and j respectively. 

𝐷𝑗
𝑖  = √(𝑥𝑗  −  𝑥𝑖)2 + (𝑦𝑗  −  𝑦𝑖)2            (1) 

The proponents then computed for the energy consumption 

of the travel, refer to (2) given that 𝐸  is the energy 

consumption (0.125 KWh/km) and 𝐸𝑗
𝑖  is the energy 

consumption between nodes i and j 

𝐸𝑗
𝑖 = 

𝐷𝑗
𝑖

𝐸
                        (2) 

The proponents then got the total cost spent for every 

recharge station in the route, including the fixed cost of 

recharge, refer to (3). Given that 𝐶𝑡   is the cost of recharge 

using technology t, and FC is the fixed cost of recharge (2.270 

€/cycle). 𝑇𝐶𝑖  is the total cost (in euro) spent in recharge 

station 𝑖. 

𝑇𝐶 = ∑𝑟
𝑖 = 0 (𝑇𝐶𝑖   +  𝐹𝐶)             (3) 

b. Fitness 

The proponents then got the total cost spent for every 

recharge station in the route, including the fixed cost of 

recharge. Given that 𝐷𝑗
𝑖  is the distance between nodes i and j 

in km,  𝐴𝑠 is the average speed (25km/h), and n is the total 

number of nodes in the route. The proponents got the time 

spent traveling between nodes i and j, refer to (4). 

𝑇𝑗
𝑖 = 

𝐷𝑗
𝑖

𝐴𝑠
                       (4) 

The proponents then got the total time spent for the 

recharge stations, where r  is the total number of recharge 

stations in a route, E is the total energy consumption of a 

trip, 𝑇𝑖𝑡  is the time spent for the recharge of recharge station i 

using technology t, and 𝑅𝑡  is the energy rate of recharge 

station using technology t. The proponents then got  the 

summation of the time spent between all nodes and their 

service time present in the entire route, refer to (5). Given that 

𝑆𝑖   is the service time of node i. 

𝐹 = ∑𝑛
𝑥 = 0  [(𝑇𝑗

𝑖)𝑥 + 𝑆𝑖  ]  + ∑𝑟
𝑥 = 1 𝑇𝑖𝑡             (5) 

c. Number of Iterations 

The convergence criterion refers to the condition that 

determines when the algorithm has converged to an 

acceptable solution or when it should terminate. In this 

research, the proponents based off the definition of the 

convergence criterion by Querin, et al. from the book 

“Discrete Method of Structural Optimization” where i is the 

current iteration number(>10), 𝑂𝐹𝑖 is the objective function 

value(cost) in the ith iteration, and Ɛ𝑖  is the convergence 

value of the objective function in the ith iteration. 

          (6) 

The convergence value was then compared to the threshold 

value of 85% for maximum precision. If the convergence 

value was below the threshold value, the program continues 

to optimize the solution. If the convergence value was equal 

or greater than the threshold value, convergence criterion was 

met, hence the program terminates, and the best solution 
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becomes the most optimal solution. 

d. CPU Execution Time 

CPU time refers to the number of seconds spent to execute 

the entire program in a specific instance of the dataset. CPU 

time was provided by the IDE used by the proponents when 

the program terminates. 

IV. RESULTS AND ANALYSIS 

This chapter illustrates the results of the different processes 

taken in order to achieve the goals set forth by the researchers 

at the beginning of this study. Furthermore, it further 

expounds on the different methodologies and environments 

used in obtaining such results. 

a. Preliminary Results 

Table 3 presents the results of the FSA runs enumerating 

the metrics previously elaborated, grouped and averaged 

according to the customer node count of the instances. It 

shows the average metrics of the instances when grouped by 

their customer node count. It shows that cost grows 

exponentially by a factor of 2 as the customer node count 

increases by a factor of 2. Average fitness follows the same 

trend where a doubling of customer node size corresponds to 

a rough doubling of fitness value. The same trend applies to 

average iterations. The average CPU times on the other hand, 

showed a fivefold increase when the customer node count 

was doubled from 100 to 200, then it showed an increase of a 

factor of 10 when the customer node count increased from 

200 to 400. 

Table III. Average Metric Cost 

n Ave. Cost 

(Euros) 

Ave. Fitness 

(Minutes) 

Ave. Iterations Ave. CPU 

Time 

(Seconds) 

100 57.07682 1646.0775 13.4 0.9259 

200 114.15895 3228.369 24.5 5.82865 

400 228.3429 6543.039 46 51.759 

b. Cost 

Table IV compares the result of cost for  FSA to other 

contemporary approaches which were included in Felipe’s 

study. It shows that FSA produced the most optimal solution 

cost-wise on instances with 100 customer nodes. It also 

shows that FSA produced the 2nd most optimal solution at 

200 nodes. Lastly, it shows that at 400 nodes, FSA produced 

the 3rd most optimal solution. 

 

 

 

 

 

Table IV. Ave. Cost Comparison Between FSA and Other 

Algorithms 

N FSA 2O RR 𝑅1
1 48A 

100 57.08 

0.00% 

88.03 

+54.22% 

92.34 

+61.77% 

66.42 

+16.36% 

64.96 

+13.81% 

200 114.16 

+2.40% 

155.41 

+39.41% 

161.72 

+45.07% 
114.65 

+2.84% 
111.48 

0.00% 

400 228.34 

+12.19% 

279.84 

+37.49% 

287.62 

+41.32% 

208.31 

+2.35% 
203.53 

0.00% 

In the instances of 100 nodes, FSA has the least cost of 

roughly € 57.07682, followed by R11, 48A, 2O, and RR 

having the greatest cost. For instances with 200 nodes, 48A 

has the least cost of 111.48 followed by FSA, R11, 2O, and 

RR having the greatest cost. For instances with 400 nodes, 

48A has the least cost of 203.53 followed by R11, FSA, 2O, 

and RR having the greatest cost of 287.62. 

c. Fitness 

Figure 2 shows the progression of the leader flamingo’s 

fitness (total service time) over the iterations of running FSA 

for N100 instances (100 customer nodes). It shows that the 

fitness of the leader flamingo is generally constant over the 

run of FSA, if not reduced by a negligible amount. 

 
Figure 2. Fitness vs. Iteration with 100 customer nodes 

Figure 3 shows the progression of the leader flamingo’s 

fitness over the iterations of running FSA for N200 instances 

(200 customer nodes). It shows that for instances 10-19, FSA 

was able to generally reduce the leader flamingo’s fitness by 

a noticeable amount. For instances 20-29, the leader 

flamingo’s fitness remains constant. 
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Figure 3. Fitness vs. Iteration with 200 customer nodes 

Figure 4 shows the progression of the leader flamingo’s 

fitness over the iterations of running FSA for N400 instances 

(400 customer nodes). It shows that the fitness of the leader 

flamingo is generally constant over the run of FSA, if not 

reduced by a negligible amount. 

 
Figure 4. Fitness vs. Iteration with 400 customer nodes 

d. CPU Execution Time 

Table V shows the comparison of the CPU execution times 

between FSA and the approaches presented in Felipe et al.’s 

study. It shows that both 2O and RR has the fastest execution 

time in all the instances followed by FSA, R11 , and 48A. 

FSA also has a fast execution time for instances with 100 

nodes. It also shows that for instances with 200 customer 

nodes, 2O and RR both run with the lowest execution time, 

followed by FSA, then followed by R11, with 48A coming 

last. The same order follows for instances with 400 customer 

nodes. 

 

 

Table V. Ave. CPU Execution Time Comparison Between 

FSA And Other Algorithms 

 FSA 2O RR 𝑅1
1 48A 

N=100 <1 <1 <1 2 57 

N=200 6 <1 <1 15 348 

N=400 52 <1 <1 91 198 

V. CONCLUSIONS AND RECOMMENDATIONS 

The Vehicle Routing Problem (VRP) poses a multifaceted 

optimization challenge crucial for industries seeking to 

enhance transportation efficiency. The escalating demands 

for swift deliveries, cost minimization, and environmental 

sustainability necessitate innovative VRP solutions. This 

study addresses the significance of devising novel approaches 

to tackle VRP complexities, considering factors like diverse 

customer demands and multiple constraints. Leveraging the 

Flamingo Search Algorithm (FSA), inspired by flamingo 

behavior, holds promise for overcoming optimization 

challenges and contributes to the advancement of efficient 

logistics systems. 

This research concentrates on the application of FSA to 

optimize vehicle routing logistics. Given the dual behaviors 

of FSA—Foraging and Migratory—this paper introduces 

operators emulating these behaviors to enhance routing 

problem optimization: 2 operators for Foraging and 1 for 

Migratory. The dataset used is sourced from Felipe et al., and 

this study endeavors to compare its outcomes with those of 

Felipe et al., utilizing four metrics: Average Cost, Fitness, 

Number of Iterations, and CPU Execution Time. 

The findings reveal that FSA exhibits competitive 

performance compared to contemporary approaches (FSA, 

2O, RR, R11, 48A) in the literature. FSA proves to be the 

most cost-effective solution, outperforming other approaches 

in instances with 100 customer nodes. For instances with 200 

and 400 customer nodes, FSA remains competitive, with a 

maximum of 12.19% higher cost than the optimal approach 

for the instance. In terms of fitness, FSA minimally impacts 

the leader flamingo's fitness. Regarding CPU execution time, 

FSA ranks among the most efficient approaches, boasting the 

third shortest execution time at most. 

While this study delves into the primary behaviors of 

flamingos, we recommend exploring the three distinct 

foraging characteristics—Communicative, Beak Scanning, 

and Bipedal mobile behaviors—when implementing 

operators. Furthermore, experimenting with parameter 

values, such as the Convergence criterion and the Ratio of 

dividing flamingos into foraging and migratory groups, is 

advised. Future research could also investigate additional 

operators to mimic migratory behavior, thereby expanding 

the scope and depth of insights into optimizing VRP using 

FSA. 
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